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Abstract. We consider hyperfine splitting of 1s and, in part, of 2s levels in light hydrogen-like atoms:
hydrogen, deuterium, tritium, helium-3 ion, muonium and positronium. We discuss present status of pre-
cision theory and experiment for the hfs intervals. We pay a special attention to a specific difference,
D21 = 8Ehfs(2s) − Ehfs(1s), which is known experimentally for hydrogen, deuterium and 3He+ ion. The
difference is weakly affected by the effects of the nuclear structure and thus may be calculated with a high
accuracy. We complete a calculation of the fourth order QED contributions to this difference and present
here new results on corrections due to the nuclear effects. Our theoretical predictions appear to be in a fair
agreement with available experimental data. Comparison of the experimental data with our examination
of D21 allows to test the state-dependent sector of theory of the hfs separation of the 1s and 2s levels in
the light hydrogen-like atoms up to 10−8.

PACS. 12.20.Fv Experimental tests – 21.45.+v Few-body systems – 31.30.Jv Relativistic and quantum
electrodynamic effects in atoms and molecules – 32.10.Fn Fine and hyperfine structure

1 Introduction

The hyperfine structure (hfs) interval in the ground state
of a number of simple atoms (hydrogen [1], deuterium [2],
tritium [3] and helium-3 ion [4]) has been measured with
a high precision. The hfs separation in the 2s metastable
state in hydrogen [5,6], deuterium [7] and the 3He+ ion [8,
9] was also measured accurately. Some experimental re-
sults are as old as almost fifty years, but the accuracy
of even present-day theoretical calculations for the hfs in-
terval in those light atoms is much lower than that for
the experiments (see e.g. Tab. 1). Theory of the hfs in-
terval in simple atoms is essentially based on the bound
state Quantum Electrodynamics (QED), however effects
due to the nuclear structure are unavoidable and they
strongly affect the energy levels. Their uncertainty lim-
its the theoretical accuracy for the hyperfine splitting in
hydrogen, deuterium, tritium and helium-3 ion on a level
of 10−200 ppm.

One of ways to avoid the problem of the nuclear ef-
fects is to study atoms free of any nuclear structure
such as muonium and positronium. Hyperfine splitting
in these pure leptonic atoms was measured [10–13] with
an accuracy appropriate for precision tests of the bound
state QED. Other possibilities to avoid the problem of lack
of accurate knowledge of the corrections induced by the
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nuclear effects is related to a fact that those corrections
are proportional to the squared value of the wave function
at the origin

∆E(Nucl) = A(Nucl)|Ψnl(r = 0)|2 , (1)

Ψnl(r = 0) =
(Zα)3m3

R

πn3
δ0l , (2)

where α is the fine structure constant, Z is the nuclear
charge andmR is the reduced mass of the orbiting particle.
The relativistic units in which ~ = c = 1 are used here and
through the paper. We ignore a difference between energy
interval E and a measured frequency ν = E/h: present-
ing the theoretical expression for the energy splitting E
and numerical results for the frequency ν. Here Ψnl(r) is
the Schrödinger-Coulomb wave function and A(Nucl) is a
nuclear parameter which does not depend on the atomic
state nl. Comparing the hfs for the atoms with a differ-
ent value of Ψnl(0) one can reduce influence of the nuclear
structure and test the bound state QED with a high ac-
curacy. There are two options to vary Ψnl(0):

– to compare muonic and electronic atoms (i.e. to study
atoms with the same nucleus and different values
of mR);

– to compare hfs intervals for the ns states with different
value of n or to study the hyperfine splitting for states
l 6= 0.
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Table 1. The ground state hfs interval in hydrogen, deuterium, tritium and helium-3 ion.

Atom Eexp
hfs [kHz] EQED

hfs [kHz] Eexp
hfs − E

QED
hfs [kHz] (Eexp

hfs − E
QED
hfs )/EF [ppm]

hydrogen 1 420 405.751 768(1), [22] 1 420 452 −46 −33

deuterium 327 384.352 522(2), [2] 327 339 45 138

tritium 1 516 701.470 773(8), [3] 1 516 760 −58 −38
3He+ ion −8 665 649.867(10), [4] −8 667 569 1 919 221

Presently accurate experimental data are available
only for one of these two options: it is possible to take
advantage of existence of precision experimental data on
the 1s and 2s hyperfine intervals in a few of light two-
body atomic systems. A comparison of the data for the 1s
and 2s hfs intervals allows to determine value of a specific
difference

D21 = 8Ehfs(2s)−Ehfs(1s) (3)

in hydrogen, deuterium and helium-3 ion. The theory of
this specific difference can be developed much more suc-
cessfully than that for the ground state interval Ehfs(1s)
because of the essential cancellation of the nuclear effects
(see Eqs. (1, 2)).

The most accurate experimental value for D21 was ob-
tained for the helium-3 ion

Dexp
21 (3He+) = 1 189.979(71) kHz (4)

after comparison of results obtained for the 1s state in
1969 [4] and for the 2s state in 1977 [9]. The QED theory
was developed by that time up to third order corrections
including the (Zα)2EF, α(Zα)2EF and (Zα)2(m/M)EF

contributions (here EF is the so-called Fermi energy, lead-
ing contribution to the 1s hfs separation). The experimen-
tal result in equation (4) happened to be in some agree-
ment with theory, however, uncertainty of theory was not
properly estimated. Here we present new theoretical re-
sults on D21 in hydrogen, deuterium and helium-3 ion [14].
In our paper we demonstrate that there are a number of
higher-order QED corrections which were not taken into
account and which are competitive with the uncertainty
of the experiment. We complete calculation of fourth or-
der corrections and present theoretical results with accu-
racy higher than that for the measurements. The higher-
order nuclear-structure effects also contribute to the
difference D21 and their contribution is important for a
comparison with experiment. They are considered in our
paper in detail.

The paper is organized as following: in Section 2 we
consider the QED theory of 1s hfs interval and determine
parameters A(Nucl) for hydrogen, deuterium and 3He+

ion. Section 3 is devoted to QED calculations of the dif-
ferenceD21. We study the fourth order QED contributions
and, in particular, we find the vacuum polarization con-
tribution in order α(Zα)3EF and the leading logarithmic
recoil term in order (Zα)3(m/M)EF. The nuclear effects
are taken into account in Section 4. We show that study
of the difference D21 provides an effective test of QED
theory of the hfs intervals Ehfs(1s) and Ehfs(2s) on a level

of accuracy essentially below 1 ppm and such a test is
free of problems of the nuclear structure. That is quite
competitive with investigations of the hyperfine splitting
in the ground state of muonium and positronium and we
present a brief overview of them in Section 5. Section 6
summarized the paper and a comparison of theory and
experiment is presented there for the difference D21 in
hydrogen, deuterium and helium-3 ion and for the ground
state hfs separation in muonium and positronium.

2 Hyperfine splitting in the ground state
in hydrogen, deuterium and helium ion

The hyperfine splitting of an ns state in a hydrogen-like
atoms is determined in the non-relativistic approximation
by the so-called Fermi energy:

Ehfs(ns) =
EF

n3
, (5)

EF/h =
8
3
Z3α2cRy

µ

µB

2I + 1
2I

(
M

m+M

)3

· (6)

Here Ry is Rydberg constant, c is speed of light, h is
the Planck constant, µB is the Bohr magneton, m is the
electron mass, M is the nuclear mass and I is the nuclear
spin. The nuclear magnetic moment µ in our notation can
be negative (if its direction is opposite to the nuclear spin)
and the Fermi energy EF defined as the splitting between
states with atomic angular moments F = I + 1/2 and I−
1/2, calculated within the non-relativistic approximation,
can be negative as well.

The result of the QED calculations is of the form

EQED
hfs (1s) = EF

(
1 +QQED(1s)

)
, (7)

and

QQED(1s) = ae +
{

3
2

(Zα)2 + α(Zα)
(

ln 2− 5
2

)
+
α(Zα)2

π

[
−2

3
ln

1
(Zα)2

(
ln

1
(Zα)2

+ 4 ln 2− 281
240

)
+ 17.122 339 . . .

− 8
15

ln 2+
34
225

]
+0.7718(4)

α2(Zα)
π

}
· (8)

The references to all terms can be found in a review in
reference [18]. The expression above is a result of the ex-
ternal field approximation. The recoil corrections involve
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Table 2. Parameters for calculations of the hfs interval in hydrogen, deuterium and helium-3 ion [20,21]. The proton charge
radius is taken from reference [24].

Atom Z I M/m µ/µB [10−3] EF [kHz] η RE [fm]

hydrogen 1 1/2 1 836.153 1.521 032 2 1 418 840 5.585 69 0.88(3)

deuterium 1 1 3 670.483 0.466 975 5 326 968 1.714 03 2.13(1)

tritium 1 1/2 5 496.922 1.622 393 6 1 515 038 17.831
3He+ 2 1/2 5 495.885 −1.158 750 5 −8 656 598 −6.368 36 1.67(1)

integration over high momentum k ∼ M and a consider-
ation of a nucleus as a point-like one is not valid in such
a case. Actually a theory of a point-like particle with an
anomalous magnetic moment is inconsistent and leads to a
divergency at high momentum transfer for the nuclear ver-
tex. The muon (and electron) must be treated as either a
point-like particle without anomalous moment, or a parti-
cle with the anomalous magnetic moment and an internal
structure. The magnetic anomaly and “structure” effects
come from the same diagrams. As a result one need to be
very careful when considering a “point-like” nucleus as an
approximation. It is important to mention that the lead-
ing recoil corrections [19] and most of non-leading terms
involve the nuclear structure effects and proportional to
the |Ψnl(0)|2 (cf. (1)).

To compute any numerical result we use here α−1 =
137.036 000, cRy = 3.289 841 960 × 1012 kHz, ae =
1.159 652×10−3 and parameters of nuclei collected in Ta-
ble 2. The values of the fundamental constants and nu-
clear parameters are based on data taken from [20,21],
but we keep them here only with the accuracy sufficient for
our purposes. The results of calculation are summarized
in Table 1. Leading recoil corrections depend on nuclear
structure. Some pure QED corrections of higher order are
known but not included being essentially smaller than un-
certainty of nuclear effects.

The theoretical calculations above take into account
only pure QED terms, while the nuclear effects can be
estimated via a comparison of the experiment and the pure
QED theory

ENucl
hfs (1s) = EExp

hfs (1s)−EQED
hfs (1s) , (9)

Ahfs(Nucl) =
EExp(1s)−EQED(1s)

|Ψ1s(0)2| · (10)

The nuclear models or study experimental data on nuclei
offer another way to find ENucl(1s) and A(Nucl) and they
are discussed in part in Section 4.

3 QED calculations of D21 in light atoms

The evaluation of the QED corrections involves contribu-
tions of the second, third and fourth order in unit of the
Fermi energy. The second [26] and third [15–17] order cor-
rections were calculated some time ago (see Tab. 3). One
of the fourth order corrections, (Zα)4EF, was also found
that time [26]. Other fourth order terms were found only

Table 3. QED contributions up to third order to the D21 in
hydrogen, deuterium and helium-3 ion.

Contribution H D 3He+

[kHz] [kHz] [kHz]

(Zα)2EF 47.222 0 10.882 2 −1 152.439 0

α(Zα)2EF (SE) 1.936 0 0.446 1 −37.441 5

α(Zα)2EF (VP) −0.058 0 −0.013 4 1.414 8

(Zα)2 m
M
EF −0.162 9 −0.009 4 −0.796 7

total up to 3rd order 48.937 1 11.305 6 −1 189.262 4

recently and the theoretical expression is now of the form

D21(QED) = (Zα)2 EF ×
{[

5
8

+
177
128

(Zα)2

]
+
α

π

[(
16
3

ln 2− 7
)

ln(Zα)− 5.221 23 . . .
]

+
α

π

[
8
15

ln 2− 7
10

]
+
m

M

[
−9

8
+
(

ln 2
2
− 7

32

)(
1− 1

η

)
−
(

145
128
− 7

8
ln 2
)
η

]
+
α2

2π2

(
16
3

ln 2− 7
)

ln(Zα)

−α
π

2m
M

(
16
3

ln 2− 7
)

ln(Zα)

+
Zα

π

m

M

(
4
3

ln 2− 2
)

ln(Zα)

+α(Zα)
(
CSE + CVP

)}
, (11)

where

η =
µ

µB

M

m

1
Z I
· (12)

Two corrections in the fourth order, α(Zα)2(m/M)EF

and α2(Zα)2EF, were found in reference [27] in the leading
logarithmic approximation and their uncertainties are es-
timated by a half-value of the leading logarithmic terms.
The coefficients CSE and CVP related to the self-energy
and vacuum polarization higher-order radiative correc-
tions were first estimated in reference [27], but with some



16 The European Physical Journal D

(a)

(b)

Fig. 1. Vacuum polarization contributions to hfs.

misprints. Below we correct that estimation and discuss a
recent calculation in reference [28].

The expression takes onto account some recoil effects.
As it was demonstrated by Sternheim [16] the n-dependent
part of the (Zα)2(m/M)EF contribution into Ehfs(ns)
does not depend on the nuclear structure. In the case of
the α(Zα)2(m/M)EF and (Zα)3(m/M)EF that is correct
at least for the logarithmic terms. The pure recoil log-
arithmic correction (Zα)3(m/M) ln(Zα)EF is evaluated
here. A logarithmic part of the QED correction in order
(Zα)3m/M is easy to calculate with help of effective po-
tentials which are responsible for (Zα)5m2/M correction
to the Lamb shift (cf. [31,32]). The result is

2
2
3

(Zα)5

π

m3

M
ln
(

1
Zα

)
EF

(Zαm)2

(
3
2
− ln 2

)
. (13)

However this result is of a reduced value as far as the ef-
fective potential for the Lamb shift in order (Zα)5m2/M
has been used. The logarithmic term (with ln(Zα)) in that
order is not dominant. That often happens with pure re-
coil contributions (in contrast the logarithmic terms dom-
inates in the case of most of radiative and radiative-recoil
corrections). The other logarithmic contribution in or-
der (Zα)5m2/M (with a recoil logarithm ln(mR)) and a
part of the non-logarithmic term are effectively included
into the nuclear-structure contributions (see the next sec-
tion). An essential non-logarithmic part which is not in-
cluded there is related to two-photon effective potentials
with derivatives. The scale of the loop integration mo-
mentum is determined by the electron mass and the re-
lated contribution does not depend on the nuclear struc-
ture (cf. the Sternheim contribution into Eq. (11) in
order (Zα)2(m/M)EF). It can be essentially enhanced be-
cause of a big value of the nuclear anomalous magnetic
moment and we estimate that non-logarithmic contribu-
tion as ±η((Zα)3/π)(m/M)EF.

The higher-order vacuum polarization correction re-
lated to CVP is found in this paper. The contribution
comes from diagrams depicted in Figure 1. They are eval-
uated with the exact Dirac wave functions and the Green
function of an electron in the Coulomb field and the result

is expanded in powers of Zα. The results for the vacuum
polarization contribution to the 2s hfs interval are (cf.
Refs. [29,30]):

∆E(Fig. 1a) =
α

π

EF

8

[
3π
8
Zα− 7

10
(Zα)2

+ (Zα)3

(
143π
192

− 3π
8

ln
(
Zα

4

))
+ . . .

]
,

∆E(Fig. 1b) =
α

π

EF

8

[
3π
8
Zα+(Zα)2

(
34
225
− 8

15
ln(Zα)

)

+ (Zα)3

(
1715π
1152

− π

6
ln
(
Zα

4

))
+ . . .

]
.

Finally one can obtain

∆EVP
hfs (2s) =

α

π

EF

8

[
3π
4
Zα+(Zα)2

(
−247

450
− 8

15
ln(Zα)

)

+ (Zα)3

(
2573π
1152

− 13π
24

ln
(
Zα

4

))
+ . . .

]
. (14)

The derivation is considered in detail in Appendix A. To
find a correction to the difference D21 one has to com-
pare the result for the vacuum polarization contribution
to the 2s hfs obtained above with that for the ground
state [29,30]

∆EVP
hfs (1s) =

α

π
EF

[
3π
4
Zα+(Zα)2

(
34
225
− 8

15
ln(2Zα)

)

+ (Zα)3

(
539π
288

− 13π
24

ln
(
Zα

2

))
+ . . .

]
. (15)

Finally we find

∆DVP
21 =

α

π
EF

{
(Zα)2

(
− 7

10
+

8
15

ln(2)
)

+ (Zα)3

(
139π
384

+
13π
24

ln(2)
)

+ . . .

}
(16)

and thus

CVP =
139
384

+
13
24

ln 2 ' 0.74 . (17)

As we have mentioned some partial results on α(Zα)3EF

terms were presented in reference [27] with a misprint.
The relative sign in equations (24, 25, 27) of paper [27]
is to be corrected and the result is (the corrected sign is
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marked by ∗)

CSE =
[

139
16
− 4 ln 2

][
3
2
− ln 2

]
−*
[

13
4
− ln 2

][
ln(2) +

3
16

]
,

CVP =
5
24

[
3
2
− ln 2

]
+* 3

4

[
ln 2 +

3
16

]
·

It was also then expected [27] that the α(Zα)3EF re-
sults found there are likely incomplete. Recently Yerokhin
and Shabaev directly calculated the self-energy contribu-
tion [28] after our suggestion

CSE(Z = 1) = 2.07(25) ,
CSE(Z = 2) = 2.01(19) .

The self-energy result of reference [28] is affected by the
higher order corrections and thus slightly depends on Z.

The complete results (17) and (18) indeed disagree
with the corrected above partial results in:

CSE =
795
64
− 7

4
+ 5 ln2 2 ' 2.5 ,

CVP =
29
64

+
13
24

ln 2 ' 0.83 . (18)

and in part it is caused by appearance of effective non-
relativistic operators with derivatives. Those operators do
not contribute into logarithmic corrections to ground state
hyperfine structure [31,32] and were not considered in ref-
erence [27]. The difference for complete and partial results
is numerically small for both: the vacuum polarization and
self energy. That is related to the fact that only the second
derivative of the wave function at origin depends on n

Ψns(r → 0) ' (Zαm)3/2

π1/2n3/2

{
1− (Zαmr) +

(Zαmr)2

2

+
1− n2

n2

(Zαmr)2

6
+ . . .

}
(19)

and the n-dependent coefficient is relatively small. Un-
der these circumstances we consider the partial results
in equations (18) as a confirmation of direct calcula-
tion of the self-energy [28] and vacuum polarization (see
Eq. (17)).

A summary of the contributions of the fourth order
terms is presented in Table 4.

4 Nuclear-structure corrections to D21

The leading nuclear-structure corrections to ENucl
hfs (1s)

and ENucl
hfs (2s), being proportional to the wave function

at origin (see Eq. (2)), cancel each other when calculating
the difference D21. However, some higher-order nuclear ef-
fects can shift D21 and, in fact, they do. The corrections

Table 4. Fourth order QED contributions to the D21 in hy-
drogen, deuterium and helium-3 ion.

Contribution H D 3He+

[kHz] [kHz] [kHz]

(Zα)4EF 0.005 6 0.001 3 −0.543

α2(Zα)2EF 0.003 3(16) 0.000 8(4) −0.069(35)

α(Zα)2 m
M
EF −0.003 1(15) −0.000 4(2) 0.022(11)

α(Zα)3EF (SE) 0.008 3(10) 0.001 9(2) −0.395(37)

α(Zα)3EF (VP) 0.003 0 0.000 7 −0.145

(Zα)3 m
MEF 0.000 5(5) 0.000 1 −0.007(10)

total: 4th order 0.0178(25) 0.0043(5) −1.137(53)

related to the nuclear structure effects can be splitted into
three terms [23,27]

D21(Nucl) = DA
21 +DB

21 +DC
21 , (20)

where

DA
21 =

(
ln 2 +

3
16

)
(Zα)2ENucl

hfs (1s) , (21)

DB
21 =

(
7
4
− 4

3
ln 2
)

(Zα)2(mRE)2EF , (22)

DC
21 = −ζ

4
(Zα)2(mRE)2EF . (23)

Here

ζ =
(
RM

RE

)2

− 1 (24)

is a ratio of quadratic magnetic and electric charge radii.
Let us discuss origin and accuracy of the nuclear-struc-

ture corrections. To find the first term (DA
21) one has to

somehow determine a value of the nuclear contribution to
the ground state hfs separation, ENucl

hfs (1s), which contains
three kinds of terms:
– nuclear-finite-size effects of order (Zα)3(mR)EF,

where R ∼ RE ∼ RM;
– nuclear polarizability corrections;
– nuclear recoil corrections of order (Zα)3(m/M)

ln(mR).
The correction for the 1s state was studied for hy-

drogen and deuterium. In the case of the hydrogen the
first term is dominant and cannot be calculated with ac-
curacy better than 20% because of lack of knowledge of
the proton magnetic form factor at low momentum trans-
fer [23,24]. The proton polarizability cannot be success-
fully estimated and delivers an essential contribution to
the value of ENucl

hfs (1s) in hydrogen. We expect that a the-
oretical uncertainty of nuclear contribution to the 1s hfs
is at least 20% of its value.

Deuteron is a weekly bound nucleus and the dom-
inant nuclear effect for the hyperfine separation in the
ground state of deuterium is related to the deuteron po-
larizability. The nuclear correction was estimated in refer-
ence [25] as 43 kHz, however, the uncertainty is not pre-
sented there. We expect that the uncertainty lies between
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10 and 30 kHz. Our assumption is based on examination
of the logarithmic approximation used in reference [25].
Let us concentrate our analysis on two corrections of −19
and +11 kHz which were found in the logarithmic ap-
proximation. They are proportional to ln(mp/κ), where
κ ' 45.7 MeV is the inverse deuteron size and mp is the
proton mass. The validity of the logarithmic approxima-
tion suggests that the logarithm is big enough, but that is
not really a case: ln(mp/κ) ' 3.0. We expect that the un-
certainty of such an approximation lies between 10 and
30 kHz, that depends on possible correlations between
these two logarithmic contributions.

To the best of our knowledge there are no results pub-
lished on the nuclear contributions to the hyperfine sepa-
ration in the tritium atom and the helium-3 ion. Due to
lack of accurate calculations for ENucl

hfs (1s) we estimate the
nuclear structure contribution to the 1s hfs interval in all
atoms discussed above by a comparison of experimental
data with a result of the QED calculations (see Tab. 1
and Eqs. (1, 2, 9, 10)).

All these corrections to ENucl
hfs (1s) are related in the

leading order to the two-photon exchange with a hard-
momentum exchange loop (k � Zαm). Their calculation
is similar to that for α(Zα)3EF terms. Some of these two-
photon contributions can induce additional terms with
derivatives but that will involve an additional suppress-
ing factor m/k. The factor m/k is small for the finite-
size and polarizability and for a logarithmic part (with
ln(mR)) of the nuclear recoil contribution. It is about
unity only for a part of the nuclear recoil contribution
related to low momentum transfer k ∼ m and k < m,
however, we have calculated those corrections of order
(Zα)3(m/M) in the leading logarithmic approximation in
equation (13). We expect these contributions are relatively
small, because the recoil effects are not dominant in the
DA

21 term and because of small numerical coefficient for
state-dependent terms in the hydrogenic wave function
at origin (see Eq. (19)). The γ-matrix structure is close
to that in the case of the vacuum polarization where the
terms with derivatives induce numerically small contribu-
tions. We estimate the uncertainty of such an approxima-
tion for DA

21 as 10%.
To verify the expression for DA

21 we also compare value
of ENucl

hfs (1s) with that for ENucl
hfs (2s)/8 (see Tab. 5). The

latter was found via a comparison of a pure QED theoret-
ical expression (cf. Eqs. (7, 8, 11))

EQED
hfs (2s) =

EF

8
(
1 +QQED(2s)

)
,

QQED(2s) = ae +
{

17
8

(Zα)2 + α(Zα)
(

ln 2− 5
2

)
+
α(Zα)2

π

[
−2

3
ln

1
(Zα)2

(
ln

1
(Zα)2

+ 8 ln 2− 1541
240

)
+ 11.901 106 . . .

− −247
450

]
+ 0.7718(4)

α2(Zα)
π

}
(25)

Table 5. 2s hyperfine splitting in light atoms. ∆Ehfs = Eexp
hfs −

EQED
hfs ) and measured in ppm in respect to EF/8.

Atom, Eexp
hfs EQED

hfs ∆Ehfs

state [kHz] [kHz] [ppm]

H, 2s 177 556.785(29), [6] 177 562.7 −33

H, 2s 177 556.860(50), [5] −32

D, 2s 40 924.439(20), [7] 40 918.81 137
3He+, 2s −1 083 354.981(9), [9] −1 083 594.7 221
3He+, 2s −1 083 354.99(20), [8] 221

Table 6. Nuclear-structure contributions to the D21 in hydro-
gen, deuterium and helium-3 ion.

Contribution H D 3He+

[kHz] [kHz] [kHz]

DA
21 −0.002 2(2) 0.002 1(2) 0.360(36)

DB
21 0.000 3 0.000 4 −0.028 5

DC
21 −1× 10−4ζ −1.3× 10−4ζ 8.6× 10−3ζ

D21(Nucl) −0.002 0.002 6(2) 0.332(36)

−1× 10−4ζ −1× 10−4ζ +9× 10−3ζ

with experimental data. The results for the nuclear con-
tributions to the 1s state in Table 1 and for the 2s state
in Table 5 agree with each other.

Two other nuclear contributions, DB
21 and DC

21 (see
Eqs. (22, 23)), are smaller than DA

21 and their evalua-
tion is similar to that for the α(Zα)2EF contributions
and completely understood. They were derived in ref-
erences [23,27] with help of some effective potentials,
and the result does not depend on any nuclear models.
The result for the nuclear contribution in equation (20)
can be presented in a form slightly different from equa-
tions (20–23)

D21(Nucl) =
(

ln 2 +
3
16

)
(Zα)2∆ENucl

hfs (1s)

+
(

21
8
− 2 ln 2

)
∆ENucl

Lamb(1s)
(Zα)2m

EF ,

−3
8
ζ
∆ENucl

Lamb(1s)
(Zα)2m

EF ,

which is more useful for phenomenological applications.
We check this expression for the effects caused by a distri-
bution of the nuclear charge and magnetic moment within
some models in Appendix B and confirm it. The results on
nuclear contributions to the D21 in the light hydrogen-like
atoms are presented in Table 6.

The final theoretical results

D21(theor) = D21(QED) +D21(Nucl) (26)

for hydrogen, deuterium and helium-3 ion are summarized
in Table 7. The table contains also the experimental
results. The main sources of uncertainty of the theoretical
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Table 7. Value of D21 in hydrogen, deuterium and helium-3 ion. Results for nuclear correction and theory are for ζ = 0.
∆(exp− th) = D21(exp) − D21(theor) and σ is a final uncertainty of ∆(exp− th). The final nuclear contribution D21(Nucl)
here is presented at ζ = 0.

Value H D 3He+

D21(exp) [kHz] 48.53(23), [6] 11.16(16), [7] −1 189.979(71), [9]

D21(QED) [kHz] 48.955(3) 11.309 9(5) −1 190.400(53)

D21(Nucl) [kHz] −0.002 0.002 6(2) 0.332(36)

D21(theor) [kHz] 48.953(3) 11.312 5(5) −1 190.067(64)

∆(exp− th) [kHz] −0.42(23) −0.15(16) 0.09(10)

∆(exp− th)/σ −1.8 −1.0 0.9

σ/EF [ppm] 0.16 0.49 0.01

Table 8. Muonium hyperfine structure.

Term Fractional ∆E

contribution [kHz]

Fermi energy 1.000 000 000 4.459 031.92(51)

ae 0.001 159 652 5 170.93

2nd order QED −0.000 195 815 −873.15

3rd order QED −0.000 005 923 −26.41

4th order QED −0.000 000 123(49) −0.55(22)

hadronic effects 0.000 000 054(1) 0.24

weak int. −0.000 000 015 0.06

total 1.000 957 830(49) 4 463 302.91(51)(22)

calculations are related to
– the use of logarithmic approximation in evaluation of

higher order QED corrections of order α2(Zα)3EF,
α(Zα)2(m/M)EF and (Zα)3(m/M)EF;

– calculation of higher-order nuclear effects.
The recoil contributions in order α(Zα)2(m/M)EF

and (Zα)3(m/M)EF also limit accuracy of the calcula-
tions of the hyperfine splitting in the ground state of muo-
nium and positronium and we overview theory of these two
quantities in the next section.

5 Hyperfine structure in pure leptonic atoms

The theoretical expression for the hfs interval in the muo-
nium ground state can be presented in the form

Ehfs(theor) = EF (1 +Q)
= EF (1 + ae +Q2 +Q3 +Q4 +Qh +Qw) ,

and the results for the QED contributions of the sec-
ond (Q2), third (Q3) and fourth order (Q4), for the
hadronic (Qh) and weak contributions (Qw) are reviewed
in reference [34] (see also Refs. [18,32,37]) and we follow
consideration there. The hadronic contribution is taken
from references [34,35]. The results are collected in Ta-
ble 8.

The dominant QED contribution to the uncertainty
(0.22 kHz) comes from unknown non-leading terms in or-
ders α(Zα)2m/M and (Zα)3m/M , which are estimated
by a half-value of the leading double logarithmic correc-
tions [31,32], despite some terms beyond the double loga-
rithms are known (see Ref. [34] for discussion).

Table 9. Positronium hyperfine splitting.

Term q Q ∆E [MHz]

Fermi energy 1 1.000 000 0 204 386.6

1st order QED −0.674 16 −0.004 919 6 −1 005.5

2nd order QED 1.084 0.000 057 7 11.8

3rd order QED −15.6 −0.000 006 1(22) −1.2(5)

total 0.995 132 1(22) 203 391.7(5)

To find an absolute value one has to determine the
Fermi energy in equation (6) which contains the mag-
netic moment of the muon. The most accurate value of
it can be obtained from study of the ground state hy-
perfine structure in the magnetic field [10]. The related
uncertainty is 0.51 kHz. Opposite to the theory of D21,
the Fermi energy has to be calculated very accurately
and its value depends on our choice of a value of the
fine structure constant. Here we use an original result
from study of anomalous magnetic moment of the electron
α−1 = 137.035 999 58(52) [38]. The related uncertainty is
only 0.03 kHz, however, scattering of various results for
the fine structure constants (see e.g. Ref. [20]) corresponds
to a much bigger uncertainty.

The positronium hfs interval can be calculated and
measured less accurately than that in muonium. However,
it provides us with a sensitive test of the same recoil cor-
rections as in the case of muonium and D21. The recoil
effects in positronium are essentially bigger than in other
atoms, because M = m, and they may be studied in de-
tail. The positronium hyperfine splitting in the ground
state can be presented in the form

Ehfs(theor) = EF

(
1 + q1 α+ q2 α

2 + q3 α
3
)

= EF (1 +Q1 +Q2 +Q3) ,

where coefficients slightly depend on α containing lnα.
The Fermi energy is defined in positronium in a different
way (comparing with Eq. (6) for hydrogen and muonium)

EF(Ps)/h = (7/6)α2cRy (27)

because of annihilation effects and a symmetric treat-
ment of magnetic moments of the electron and the nu-
cleus (positron). The results are summarized in Table 9
(see [18,36,39–42] and references there in). The third or-
der corrections appear to be large because of a double
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Table 10. Hyperfine splitting: precision tests of the bound state QED. The final uncertainty σ includes contributions from
both: theory and experiment. References for the D21 are presented for the both states: 2s and 1s.

Atom Value Exp. [kHz] Theor. [kHz] ∆ [kHz] ∆/σ σ/EF [ppm]

Mu Ehfs(1s) 4 463 302.78(5), [10] 4 463 302.91(56) 0.12

Ps Ehfs(1s) 203 389.1(7) × 103, [12] 203 391.9(5) × 103 −2.8(9) −3.3 3.4

Ps Ehfs(1s) 203 387.5(16) × 103, [13] −4.4(17) −2.6 7.9

H D21 48.53(23), [6]/[22] 48.953(3) −0.42(23) −1.8 0.16

H D21 49.13(40), [5]/[22] 0.18(40) 0.4 0.28

D D21 11.16(16), [7]/[2] 11.312 5(5) −0.15(16) −1.0 0.49
3He+ D21 −1 189.979(71), [9]/[4] −1 190.068(64) 0.09(10) 0.9 0.01
3He+ D21 −1 190.1(16), [8]/[4] 0.03(160) −0.02 0.18

logarithmic enhancement [31] (ln2 α ' 24). The value
of q3 is calculated with taking into account recent results
on α7m lnα correction [36], however, the uncertainty is es-
timated by a half-value of the leading α7m ln2 α [31] (see
Ref. [34] for discussion).

6 Summary

The results for the precision calculations of the hyperfine
structure in the light hydrogen-like atoms are summarized
in Table 10. One can see that investigations of the differ-
ence D21 provide very accurate tests of the bound state
QED calculations. We consider study of D21 as a test of
a state-dependent sector of theory of the hyperfine split-
ting of the 1s and 2s states and so the fractional accuracy
of such theory is related to the EF, the leading contri-
bution to the 1s hfs. The accuracy of comparison of the-
ory and experiment can be characterized by a standard
deviation σ which contains contributions to uncertainty
from both: theory and experiment. The final uncertainty
is found to be for D21 as small as few part of 107 in the
case of hydrogen and deuterium and even better in the
case of helium ion: a part of 108. That is competitive with
other tests of the bound state QED and in order to clarify
advantages and disadvantages of studying D21 let us list
main problems which theoretical calculations have met by
now:

– there are two essential problems of the bound
state QED:
– evaluation of higher-order recoil corrections (that

is mainly a problem of all QED calculations for the
hyperfine structure including D21);

– evaluation of higher-order two-loop corrections
(that is rather a problem of the Lamb shift calcu-
lation and only one value related to the hyperfine
structure, D21, is sensitive to such corrections);

– there are two other problems related to other part of
physics:
– determination of the fundamental constants (like

e.g. determination of the fine structure constant
and magnetic moment of muon needed to calculate
the Fermi energy EF);

– nuclear structure, which affect energy levels and, in
particular, shifts values of the Lamb shift and the
hyperfine separation.

The difference D21 happens to be an only value that is
sensitive to both higher-order corrections: recoil and two-
loop and that is not sensitive to problems beyond QED
(determination of the fundamental constants and nuclear
structure). Tests of QED are sometimes considered as a
search for new physics beyond the standard model. Such
exotic contributions are rather expected to be propor-
tional to 1/n3 and must vanish for D21 in the leading or-
der. The next-to-leading terms could contribute but they
effectively would be taken into account in DNucl

21 being in-
cluded into ENucl

hfs (1s). That fact makes the difference D21

useful for a very specific test of the bound state QED, a
test which involves no problem beyond QED.

Our theoretical predictions appear to be in a fair
agreement with four of five accurate measurements (see
Tab. 10), while a minor discrepancy of 1.8 σ with the
most recent result from reference [6] is observed. Because
of agreement with other data and especially with the most
accurate result for helium ion [9] we expect that the prob-
lem of this minor discrepancy comes from the experimen-
tal side. One can see that there have been no improve-
ment in microwave measurements of the 2s hfs for the last
few decades. We expect that some progress is still possi-
ble and that it is now also possible to perform an optical
measurement of this quantity via comparison of different
1s − 2s transitions in hydrogen and deuterium, some of
which were measured recently very precisely [43].
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Appendix A: The vacuum polarization
contribution to the 2s hyperfine splitting

An exact relativistic expression for the vacuum polariza-
tion correction to hfs in the ground state of a hydrogen-
like atom with a point-like nucleus was derived in refer-
ences [29,30]. Using the same method we can calculate
the vacuum polarization contribution for the 2s-state. As
in the case of the 1s state [29], we study a more general
case considering an orbiting particle with the mass m dif-
ferent from the electron mass me which is related here
to a particle in the vacuum loop (see Fig. 1). That offers
an opportunity to perform some additional tests of our
results.

The diagrams contributing to the hfs separation are
presented in Figure 1. We obtain

∆E2(VP–TU) =
α

π
ET(2s)

× 1
2− 5ε+ 2ε2 − 2E2s(1 + E2s)(5− 2ε)

×
{
−4E2s(1 + E2s)(3− 2ε)2(1− ε)J10(κ2)

−(1 + 6E2s + 6E2
2s)(3− 2ε)2(1− 2ε)J20(κ2)

+2(1 + 2E2s)2(1− ε)(5− 13ε+ 6ε2)J30(κ2)

−(1 + 2E2s)2(1− ε)(3− 8ε+ 4ε2)J40(κ2)
}

for the single-potential contribution related to Fig-
ure 1a and

∆E2(VP–UT) = −α
π
ET(2s)

× E2s(Zα)2(3− 2ε)2

ε(1− 2ε)2(5 + 4E2s − 2ε)(2− ε)2

×
{
−2(1 + ε)(2 + 2E2s − 5ε+ 2ε2)

1− 2ε
J10(κ̃2)

+
4− 9ε2 + 4ε3

1− ε J20(κ̃2)

+
4− 21ε+ 23ε2 − 8ε3

(1− ε)2
E2s J20(κ̃2)

−
2
(
−18 + 31ε− 19ε2 + 4ε3

)
3− 2ε

J30(κ̃2)

−
2
(
−6 + 9ε− 10ε2 + 4ε3

)
3− 2ε

E2s J30(κ̃2)

−2
[
10− 9ε+ 2ε2 + E2s(13− 14ε+ 4ε2)

]
J40(κ̃2)

+2(1 + 2E2s)(2− ε)2 J50(κ̃2)

+
4(2− ε)(1 + E2s − ε)

1− ε J21(κ̃2)

−8(1 + E2s)(2− ε)J31(κ̃2)

+4(1 + 2E2s)(2− ε)J41(κ̃2)
}

for the double-potential term in Figure 1b. Here we mainly
follow notations of references [29,44] and, in particular, we

introduce the relativistic Fermi-Breit energy [26]

ET(2s) = EF
ε

2(Zα)2

×

[
(1 + E2s)(5− 2ε)− 1

]
(1 + 2E2s)(1− ε)(2− ε)(3− 8ε+ 4ε2)

≈ EF

8

(
1 +

17
8

(Zα)2 + . . .

)
,

where

ε = 1−
√

1− (Zα)2) =
(Zα)2

2

(
1 +

(Zα)2

4
+ . . .

)
,

E2s =

√
2− ε

2
' 1− (Zα)2

8
+ . . . ,

κ =
Zαm

me
,

κ̃2 =
κ

2E2s
=
κ

2

(
1 +

(Zα)2

8
+ . . .

)
.

Basic integrals Jmn are defined as

Jmn(κ) =
∫ 1

0

dv
v2(1− v2/3)

1− v2

(
κ
√

1− v2

1 + κ
√

1− v2

)m−2ε

× lnn
(

κ
√

1− v2

1 + κ
√

1− v2

)
·

They can be expressed in terms of the beta-function and
the hypergeometric function as follows [29,44]

Jm0 =
1
2
κmB

(
3/2,m/2

)
×3F2

(
m/2, m/2 + 1/2, m/2; 1/2, m/2 + 3/2; κ2

)
−m

2
κm+1B

(
3/2,m/2 + 1/2

)
×3F2

(
m/2 + 1,m/2 + 1/2,m/2 + 1/2; 3/2,m/2 + 2; κ2

)
−1

6
κmB

(
5/2,m/2

)
×3F2

(
m/2, m/2 + 1/2, m/2; 1/2, m/2 + 5/2; κ2

)
+
m

6
κm+1B

(
5/2,m/2 + 1/2

)
×3F2

(
m/2 + 1,m/2 + 1/2,m/2 + 1/2; 3/2,m/2 + 3; κ2

)
and

Jmn =
∂nJm0

∂mn
·

In the case of an electronic atom (m = me) and small Zα
we arrive to a result in equation (14), which reproduces
all known terms of the expansion over Zα [15,32,45] and
presents a new contribution in order α(Zα)3EF.

One can also study the vacuum-polarization contribu-
tion to the hfs in muonic atoms putting m = mµ. In the
case of low Z and arbitrary κ = Zαmµ/me ' 1.5Z we
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reproduce the non-relativistic limits [46]. For the case of
small Zα and large κ the result can be presented as an
expansion over Zα and κ−1:

∆E2(VP) =
α

π

EF

8

{[
8
3

ln(κ) +
4π2

9
− 85

18
+

49
κ2

]
+ (Zα)2

[
17
2

ln(κ) +
3π2

2
− 37

3

− 8
3
ψ′′(2) +

303
4κ2

]
+ . . .

}
, (A.1)

where ψ(z) is the logarithmic derivative of the Γ -function.
The logarithmic part of the correction can be easily found
within the effective charge approach (cf. [29,44]), results
agree with (A.1) and that is an additional confirmation of
our result.

Appendix B: A model-dependent calculation
of the finite-nuclear-size corrections to energy
levels

Here we study the contributions to ENucl
Lamb(1s), ENucl

hfs (1s)
and D21 related to the distribution of the nuclear charge
and the nuclear magnetic moment. The distribution is de-
scribed by the nuclear electric and magnetic form factors

GaE(q2) = 1 + βE

[(
Λ2

E

q2 + Λ2
E

)a
− 1
]
,

GaM(q2) = µ

{
1 + βM

[(
Λ2

M

q2 + Λ2
M

)a
− 1
]}

.

Parameters Λ and β are free parameters, however, we con-
sider here only linear in β contributions. Since we intend
to verify a model independent expression in equation (26),
it is not important that the distribution above is not quite
a real one.

We perform calculations with the Dirac wave functions
and expand the results over (Zα) and m/Λ. In the case of
a = 1 the nuclear corrections are

ENucl
Lamb(1s) = 4(Zα)4βE

(
m

ΛE

)2

m ,

ENucl
hfs (1s) = −4Zα

(
βEm

ΛE
+
βMm

ΛM

)
EF ,

D21(Nucl) = −
(

3
4

+ 4 ln 2
)

(Zα)3

(
βEm

ΛE
+
βMm

ΛM

)
EF

+(12− 8 ln 2)(Zα)2βE

(
m

ΛE

)2

EF

−3
2

(Zα)2βM

(
m

ΛM

)2

EF

and

RE =
6βE

Λ2
E

, RM =
6βM

Λ2
M

·

We note that in the case of βE = βM = 1, ΛE = ΛM we
arrive at a = 2 to the so-called dipole model commonly
used as an approximation for the proton internal struc-
ture. However, since we calculate the linear in β terms the
well-known result for the hydrogen hfs cannot be repro-
duced. In the case of a = 2 we find

ENucl
Lamb(1s) = 8(Zα)4βE

(
m

ΛE

)2

m ,

ENucl
hfs (1s) = −6Zα

(
βEm

ΛE
+
βMm

ΛM

)
EF ,

D21(Nucl) = −
(

9
8

+ 6 ln 2
)

(Zα)3

(
βEm

ΛE
+
βMm

ΛM

)
EF

+(24− 16 ln 2)(Zα)2βE

(
m

ΛE

)2

EF

−3(Zα)2βM

(
m

ΛM

)2

EF

and

RE =
12βE

Λ2
E

, RM =
12βM

Λ2
M

·

The results for a = 1 and a = 2 confirm expression in
equation (26). Similar calculations can be performed for
any integer value of a. Let us also mention, that in princi-
ple any moments of a real distribution (〈RnρN (R)〉) can
be reproduced by a finite sum of GaE(q2) and GaM(q2) over
integer a after adjusting parameters Λ(a) and β(a).
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